中标
T822油箱实验服务(XJ023022100262)
金额
-
项目地址
四川省
发布时间
2023/02/21
公告摘要
公告正文
基本信息
发布单位:泸州发展机械有限公司
最终单位:泸州发展机械有限公司
参与方式:公开询价
出价方式:一次性出价
付款方式:
保证金:0.0元
联系人:徐
联系方式:0830-2796256
DVP-PAB2-9K007-AA-20231213.xls DVP-PAB2-9K007-AA-20231213.xls
采购明细
序号
|
商品名称
|
品类
|
采购数量
|
最少响应量
|
---|---|---|---|---|
1 | T822油箱实验服务 | 其他物资 | 1.0批 | 1.0批 |
可报价时间
开始时间 2023-02-23 13:14:52
结束时间 2023-02-25 13:14:52
报价地址:
https://newtd.norincogroup-ebuy.com/inquiryweb/index
Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Creat Date: | Creat Date: | Type Date Here | Type Date Here | Type Date Here | |
Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Design Verification Plan and Report /DVP&R | Revision Date: | Revision Date: | Type Date Here | Type Date Here | Type Date Here | |
Program name | Supplier name | Part Number | Latest part level | Approver sign off | Approver sign off | Verifier sign off | Verifier sign off | Verifier sign off | design sign off | design sign off | ||||||||
T822 REEV燃油箱总成 | T822 REEV燃油箱总成 | T822 REEV燃油箱总成 | T822 REEV燃油箱总成 | T822 REEV燃油箱总成 | 供应商名称:泸州发展机械有限公司 | 供应商名称:泸州发展机械有限公司 | 零件号:PAB2-9K007-AA | 零件号:PAB2-9K007-AA | 零件号:PAB2-9K007-AA | 最新的零件号(设变后的) | 最新的零件号(设变后的) | Signature | Signature | Signature | Signature | Signature | Signature | Signature |
Test Name 试验名称 | Test Name 试验名称 | Test Name 试验名称 | Acceptance Criteria and Statistical Conformance 接受标准和产品一致性 | Acceptance Criteria and Statistical Conformance 接受标准和产品一致性 | Acceptance Criteria and Statistical Conformance 接受标准和产品一致性 | Design Level Tested/测试阶段要求 | SAMPLE SIZE | SAMPLE SIZE | Timing (Day/Month/Year)时间 | Timing (Day/Month/Year)时间 | Test type 试验类型 | Where Tests Run/测试方 | Test Results/测试结果 | Test Results/测试结果 | Evaluation and Comments评估 | Evaluation and Comments评估 | Evaluation and Comments评估 | Evaluation and Comments评估 |
Test Specification 试验规范 | Test Specification 试验规范 | Test Specification 试验规范 | DV&PV | Required | Tested | Sched. | Actual | |||||||||||
NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 | NOTE: 这个模板适用于JMC燃油系统柴油金属燃油箱DV模板: 1、此柴油金属燃油箱的DVP涵盖不锈钢和镀铝板等不同材料,具体的实验项以及实验数量需要参考具体项目进行增减和筛选。 2、黄色的单元格必须在计划阶段填写,绿色的单元格在试验报告阶段填写。 |
油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 | 油箱总成 |
7.压力下油位指示线性偏差 福特TM | 7.压力下油位指示线性偏差 福特TM | 7.压力下油位指示线性偏差 福特TM | 试验规范: 1.在油箱上表面焊接连接头; 2.将油箱安装在试验架上,调节油箱水平; 3.往油箱内加入50%额定容积的stoddard液体; 4.油箱内施加35kPa的压力,放置24h; 5.24h后,再次向油箱内加入50%的额定容积的stoddard液体,再次施加35kPa的压力; 6.将油箱内的stoddard液体以30L/h的速度泵出,直到没有stoddard液体被泵出; 7.抽油过程中测量燃油箱的容积对应阻值V-R的关系; 8.油箱内施加-15kPa的压力,重复上述步骤3~7; 9.在常温和常压下重复上述步骤3~7 接受标准: V-R满足设计要求 | 试验规范: 1.在油箱上表面焊接连接头; 2.将油箱安装在试验架上,调节油箱水平; 3.往油箱内加入50%额定容积的stoddard液体; 4.油箱内施加35kPa的压力,放置24h; 5.24h后,再次向油箱内加入50%的额定容积的stoddard液体,再次施加35kPa的压力; 6.将油箱内的stoddard液体以30L/h的速度泵出,直到没有stoddard液体被泵出; 7.抽油过程中测量燃油箱的容积对应阻值V-R的关系; 8.油箱内施加-15kPa的压力,重复上述步骤3~7; 9.在常温和常压下重复上述步骤3~7 接受标准: V-R满足设计要求 | 试验规范: 1.在油箱上表面焊接连接头; 2.将油箱安装在试验架上,调节油箱水平; 3.往油箱内加入50%额定容积的stoddard液体; 4.油箱内施加35kPa的压力,放置24h; 5.24h后,再次向油箱内加入50%的额定容积的stoddard液体,再次施加35kPa的压力; 6.将油箱内的stoddard液体以30L/h的速度泵出,直到没有stoddard液体被泵出; 7.抽油过程中测量燃油箱的容积对应阻值V-R的关系; 8.油箱内施加-15kPa的压力,重复上述步骤3~7; 9.在常温和常压下重复上述步骤3~7 接受标准: V-R满足设计要求 | DV | 3 assy | 开始2023.3.15 结束2023.3.25 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
9.加油容积试验 | 9.加油容积试验 | 9.加油容积试验 | 试验规范: 常规加油: 1.将油箱按照整车半载的地面线,使台架油箱、加油管的安装点高度与整车一致,保证油箱台架底部与整车半载平面重合,此为基准姿态,同时油箱上方安装压力传感器,测量油箱内压力。 2.将台架按照水平面加油,然后再按X(后倾)/Y(左倾)两个方向倾斜3°加油进行加油,每次跳枪时记录油泵输出电阻值。 3.加油速率分别按38 L/min、45 L/min进行加油 4.加油枪型号定义:OPW11、ZVA。 5.环境温度:23±3℃;油温:20±1℃;汽油RVP:>60; 扫枪加油(1次): 油箱固定台架调至水平,采用OPW11,以38L/min加油,待流速稳定后,每隔20s进行扫枪一次(6 o'clock-4 o'clock-6 o'clock-8 o'clock-6 o'clock,按时钟方向) 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷。 | 试验规范: 常规加油: 1.将油箱按照整车半载的地面线,使台架油箱、加油管的安装点高度与整车一致,保证油箱台架底部与整车半载平面重合,此为基准姿态,同时油箱上方安装压力传感器,测量油箱内压力。 2.将台架按照水平面加油,然后再按X(后倾)/Y(左倾)两个方向倾斜3°加油进行加油,每次跳枪时记录油泵输出电阻值。 3.加油速率分别按38 L/min、45 L/min进行加油 4.加油枪型号定义:OPW11、ZVA。 5.环境温度:23±3℃;油温:20±1℃;汽油RVP:>60; 扫枪加油(1次): 油箱固定台架调至水平,采用OPW11,以38L/min加油,待流速稳定后,每隔20s进行扫枪一次(6 o'clock-4 o'clock-6 o'clock-8 o'clock-6 o'clock,按时钟方向) 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷。 | 试验规范: 常规加油: 1.将油箱按照整车半载的地面线,使台架油箱、加油管的安装点高度与整车一致,保证油箱台架底部与整车半载平面重合,此为基准姿态,同时油箱上方安装压力传感器,测量油箱内压力。 2.将台架按照水平面加油,然后再按X(后倾)/Y(左倾)两个方向倾斜3°加油进行加油,每次跳枪时记录油泵输出电阻值。 3.加油速率分别按38 L/min、45 L/min进行加油 4.加油枪型号定义:OPW11、ZVA。 5.环境温度:23±3℃;油温:20±1℃;汽油RVP:>60; 扫枪加油(1次): 油箱固定台架调至水平,采用OPW11,以38L/min加油,待流速稳定后,每隔20s进行扫枪一次(6 o'clock-4 o'clock-6 o'clock-8 o'clock-6 o'clock,按时钟方向) 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷。 | DV | 1 assy | 开始2023.3.15 结束2023.3.20 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
10.Green tank加油试验 | 10.Green tank加油试验 | 10.Green tank加油试验 | 试验规范: 油箱固定台架调至水平,油箱上方安装压力传感器,测量油箱内蒸汽压力,采用OPW11加油枪,以15L/min加油,环境温度:23±3℃;油温:20±1℃;汽油RVP:>60 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷 | 试验规范: 油箱固定台架调至水平,油箱上方安装压力传感器,测量油箱内蒸汽压力,采用OPW11加油枪,以15L/min加油,环境温度:23±3℃;油温:20±1℃;汽油RVP:>60 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷 | 试验规范: 油箱固定台架调至水平,油箱上方安装压力传感器,测量油箱内蒸汽压力,采用OPW11加油枪,以15L/min加油,环境温度:23±3℃;油温:20±1℃;汽油RVP:>60 接受标准: 一枪到额定容积,三枪不超过105%,无PSO、无反喷 | DV | 3assy | 开始2023.3.10 结束2023.3.15 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
11.静态通风 | 11.静态通风 | 11.静态通风 | 试验规范: 将油箱模拟整车状态固定在试验台架上,注入103%额定容积试验燃油,在水平状态下最高平面设置通气孔,将试验机通气管与油箱通气孔连接,调整通气流量至5L/min稳定状态,观察阀门开闭状态,记录油箱内部压力;分别将油箱按前倾16.7°、右倾9.6°、后倾16.7°、左倾9.6°,观察阀门关闭状态,记录油箱内部压力。在各个试验状态下,至少有1个阀门保持敞开,试验过程中油箱内部压力应≤10kPa。 接受标准: 无泄漏,记录过程压力变化 | 试验规范: 将油箱模拟整车状态固定在试验台架上,注入103%额定容积试验燃油,在水平状态下最高平面设置通气孔,将试验机通气管与油箱通气孔连接,调整通气流量至5L/min稳定状态,观察阀门开闭状态,记录油箱内部压力;分别将油箱按前倾16.7°、右倾9.6°、后倾16.7°、左倾9.6°,观察阀门关闭状态,记录油箱内部压力。在各个试验状态下,至少有1个阀门保持敞开,试验过程中油箱内部压力应≤10kPa。 接受标准: 无泄漏,记录过程压力变化 | 试验规范: 将油箱模拟整车状态固定在试验台架上,注入103%额定容积试验燃油,在水平状态下最高平面设置通气孔,将试验机通气管与油箱通气孔连接,调整通气流量至5L/min稳定状态,观察阀门开闭状态,记录油箱内部压力;分别将油箱按前倾16.7°、右倾9.6°、后倾16.7°、左倾9.6°,观察阀门关闭状态,记录油箱内部压力。在各个试验状态下,至少有1个阀门保持敞开,试验过程中油箱内部压力应≤10kPa。 接受标准: 无泄漏,记录过程压力变化 | DV or PV | 3 assy | 开始2023.3.20 结束2023.3.31 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
12.GB 强检试验 GB 18296-2019 | 12.GB 强检试验 GB 18296-2019 | 12.GB 强检试验 GB 18296-2019 | 试验规范: 详见 GB18296-2019 接受标准: 符合国标GB18296-2019要求 | 试验规范: 详见 GB18296-2019 接受标准: 符合国标GB18296-2019要求 | 试验规范: 详见 GB18296-2019 接受标准: 符合国标GB18296-2019要求 | DV or PV | 1 assy | 开始2023.3.01 结束2023.3.15 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
15.国六燃油系统Ⅳ型蒸发排放试验GB 18352.6-2016 | 15.国六燃油系统Ⅳ型蒸发排放试验GB 18352.6-2016 | 15.国六燃油系统Ⅳ型蒸发排放试验GB 18352.6-2016 | 试验规范: 测试方法: 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重记录m1,加载至2g击穿,碳罐称重记录m2,控制环境温度为23±5℃,以25L/min脱附碳罐,脱附倍数300BV,碳罐称重记录m3; 2、连接好加油管、油箱、吸附管、FTIV阀(加油时需通电)、碳罐,堵住油泵口,加入95%国六燃油(油温24±2℃),碳罐称重记录m4; 3、断开碳罐并堵住碳罐所有接口,给油泵通电,抽油直至无燃油泵出,加入40%国六燃油(油温24±2℃),重新连接碳罐; 4、加油管、油箱、吸附管、碳罐置于大密闭室内,并将碳罐置于电子称上记录碳罐质量(如条件不允许可以不监测过程中碳罐的重量变化情况); 5、调整环境温度为38±2℃环境下存放12~36小时(按最低12h),碳罐称重并记录m5; 6、上一步结束后10min内,继续在环境温度为38℃±2℃环境下,按照计算的脱附量BV数a(a BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,BV是碳罐的碳粉体积(L); 7、记录大密闭室的碳氢碳氢排放量M1,在恒温38℃±2密闭室热浸60±0.5min,记录大密闭室碳氢排放量M2(x g),同时碳罐称重并记录m7; 8、调整大密闭室温度调整至20℃±2左右,静置6~36小时(按最低6h),碳罐称重并记录m8; 9、记录大密闭室碳氢排放量M3,开始两昼夜浸车(参考国六法规附件FB),第一个24小时结束时记录大密闭室碳氢排放量M4(x1 g),第二个24小时结束时记录大密闭室碳氢排放量M5(x2 g); 10、两昼夜完毕后称量碳罐记录m9,计算系统排放=取两昼夜排放更大的一天的结果+步骤7热浸HC排放(x + max(x1,x2)); 接受标准: HC排放≤80mg | 试验规范: 测试方法: 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重记录m1,加载至2g击穿,碳罐称重记录m2,控制环境温度为23±5℃,以25L/min脱附碳罐,脱附倍数300BV,碳罐称重记录m3; 2、连接好加油管、油箱、吸附管、FTIV阀(加油时需通电)、碳罐,堵住油泵口,加入95%国六燃油(油温24±2℃),碳罐称重记录m4; 3、断开碳罐并堵住碳罐所有接口,给油泵通电,抽油直至无燃油泵出,加入40%国六燃油(油温24±2℃),重新连接碳罐; 4、加油管、油箱、吸附管、碳罐置于大密闭室内,并将碳罐置于电子称上记录碳罐质量(如条件不允许可以不监测过程中碳罐的重量变化情况); 5、调整环境温度为38±2℃环境下存放12~36小时(按最低12h),碳罐称重并记录m5; 6、上一步结束后10min内,继续在环境温度为38℃±2℃环境下,按照计算的脱附量BV数a(a BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,BV是碳罐的碳粉体积(L); 7、记录大密闭室的碳氢碳氢排放量M1,在恒温38℃±2密闭室热浸60±0.5min,记录大密闭室碳氢排放量M2(x g),同时碳罐称重并记录m7; 8、调整大密闭室温度调整至20℃±2左右,静置6~36小时(按最低6h),碳罐称重并记录m8; 9、记录大密闭室碳氢排放量M3,开始两昼夜浸车(参考国六法规附件FB),第一个24小时结束时记录大密闭室碳氢排放量M4(x1 g),第二个24小时结束时记录大密闭室碳氢排放量M5(x2 g); 10、两昼夜完毕后称量碳罐记录m9,计算系统排放=取两昼夜排放更大的一天的结果+步骤7热浸HC排放(x + max(x1,x2)); 接受标准: HC排放≤80mg | 试验规范: 测试方法: 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重记录m1,加载至2g击穿,碳罐称重记录m2,控制环境温度为23±5℃,以25L/min脱附碳罐,脱附倍数300BV,碳罐称重记录m3; 2、连接好加油管、油箱、吸附管、FTIV阀(加油时需通电)、碳罐,堵住油泵口,加入95%国六燃油(油温24±2℃),碳罐称重记录m4; 3、断开碳罐并堵住碳罐所有接口,给油泵通电,抽油直至无燃油泵出,加入40%国六燃油(油温24±2℃),重新连接碳罐; 4、加油管、油箱、吸附管、碳罐置于大密闭室内,并将碳罐置于电子称上记录碳罐质量(如条件不允许可以不监测过程中碳罐的重量变化情况); 5、调整环境温度为38±2℃环境下存放12~36小时(按最低12h),碳罐称重并记录m5; 6、上一步结束后10min内,继续在环境温度为38℃±2℃环境下,按照计算的脱附量BV数a(a BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,BV是碳罐的碳粉体积(L); 7、记录大密闭室的碳氢碳氢排放量M1,在恒温38℃±2密闭室热浸60±0.5min,记录大密闭室碳氢排放量M2(x g),同时碳罐称重并记录m7; 8、调整大密闭室温度调整至20℃±2左右,静置6~36小时(按最低6h),碳罐称重并记录m8; 9、记录大密闭室碳氢排放量M3,开始两昼夜浸车(参考国六法规附件FB),第一个24小时结束时记录大密闭室碳氢排放量M4(x1 g),第二个24小时结束时记录大密闭室碳氢排放量M5(x2 g); 10、两昼夜完毕后称量碳罐记录m9,计算系统排放=取两昼夜排放更大的一天的结果+步骤7热浸HC排放(x + max(x1,x2)); 接受标准: HC排放≤80mg | DV or PV | 1 assy | 开始2023.3.20 结束2023.3.31 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
16.国标VII型油气收集试验 GB 18352.6-2016 | 16.国标VII型油气收集试验 GB 18352.6-2016 | 16.国标VII型油气收集试验 GB 18352.6-2016 | 试验规范: VII型油蒸汽测试方法: 测试燃油RVP值(要求在60~62之间) 1、碳罐1称重记录为m1; 2、将空油箱、碳罐1、吸附管、FTIV阀(加油时通电)、加油管连接好,堵住油泵出油口; 3、环境温度为23℃±5℃,加入标称油箱容积燃油:10%±0.5L,燃油温度:18℃±8℃ ; 4、控制环境温度:23℃±3℃,静置1小时后碳罐1重量记录为m2; 5、碳罐2(封口状态)称重记录为m3,将碳罐1换成碳罐2; 6、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃,以37±1L/min的速度往油箱内加入85%±0.5L油箱额定容积的汽油,记录加油量为X升; 7、在上一步结束后的60s±5s时间内将碳罐2拆下,立即用原封口部件进行封口,再进行碳罐2称重记录为m4; 8、Ⅶ型蒸汽生成量为m4-m3,蒸汽产生速率为(m4-m3)/X; 接受标准: VII型加油时油气生成速率≤1.3g/L | 试验规范: VII型油蒸汽测试方法: 测试燃油RVP值(要求在60~62之间) 1、碳罐1称重记录为m1; 2、将空油箱、碳罐1、吸附管、FTIV阀(加油时通电)、加油管连接好,堵住油泵出油口; 3、环境温度为23℃±5℃,加入标称油箱容积燃油:10%±0.5L,燃油温度:18℃±8℃ ; 4、控制环境温度:23℃±3℃,静置1小时后碳罐1重量记录为m2; 5、碳罐2(封口状态)称重记录为m3,将碳罐1换成碳罐2; 6、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃,以37±1L/min的速度往油箱内加入85%±0.5L油箱额定容积的汽油,记录加油量为X升; 7、在上一步结束后的60s±5s时间内将碳罐2拆下,立即用原封口部件进行封口,再进行碳罐2称重记录为m4; 8、Ⅶ型蒸汽生成量为m4-m3,蒸汽产生速率为(m4-m3)/X; 接受标准: VII型加油时油气生成速率≤1.3g/L | 试验规范: VII型油蒸汽测试方法: 测试燃油RVP值(要求在60~62之间) 1、碳罐1称重记录为m1; 2、将空油箱、碳罐1、吸附管、FTIV阀(加油时通电)、加油管连接好,堵住油泵出油口; 3、环境温度为23℃±5℃,加入标称油箱容积燃油:10%±0.5L,燃油温度:18℃±8℃ ; 4、控制环境温度:23℃±3℃,静置1小时后碳罐1重量记录为m2; 5、碳罐2(封口状态)称重记录为m3,将碳罐1换成碳罐2; 6、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃,以37±1L/min的速度往油箱内加入85%±0.5L油箱额定容积的汽油,记录加油量为X升; 7、在上一步结束后的60s±5s时间内将碳罐2拆下,立即用原封口部件进行封口,再进行碳罐2称重记录为m4; 8、Ⅶ型蒸汽生成量为m4-m3,蒸汽产生速率为(m4-m3)/X; 接受标准: VII型加油时油气生成速率≤1.3g/L | DV | 1 assy | 开始2023.3.15 结束2023.3.20 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
17.燃油系统ORVR加油试验 | 17.燃油系统ORVR加油试验 | 17.燃油系统ORVR加油试验 | 试验规范: 参照国六法规标准测试或按客户要求 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重并记录m1,控制环境温度为23±5℃,连接好加油管、油箱、吸附管、FTIV阀(加油时通电)、碳罐,堵住油泵口,加入40%国六燃油(控制油温18±8℃),碳罐称重记录m2,加载至2g击穿,碳罐称重记录m3; 2、按照计算的脱附量BV数a1*33%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重记录m4; 3、继续在环境温度为23℃±5℃环境下存放12~36小时,碳罐称重并记录m5; 4、环境温度为23℃±5℃,按照计算的脱附量BV数a1*67%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,更换为辅助碳罐,替换下来的碳罐封住所有口; 5、环境温度:为23℃±5℃,采用油泵通电放干油(直到抽不出油,记录抽出汽油量),加入标称油箱容积:10%±0.5L(油温24℃±2℃); 6、控制环境温度:23℃±3℃ ,静置6~36小时,拆除辅助碳罐,对原碳罐再次称重记录为m7,并接回原碳罐(堵住脱附口); 7、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃记录密闭室碳氢排放量M1,以37±1 L/min的速度往油箱内加入85%±0.5L油箱额定容积的国六汽油,记录加油量 X L; 8、在上一步结束后的60s±5s时间内,记录密闭室碳氢排放量M2,碳罐称重记录m8,记录系统加油过程的HC排放 x g; 计算加油排放=x/X 接受标准: 要求加油过程中HC排放≤0.04g/L | 试验规范: 参照国六法规标准测试或按客户要求 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重并记录m1,控制环境温度为23±5℃,连接好加油管、油箱、吸附管、FTIV阀(加油时通电)、碳罐,堵住油泵口,加入40%国六燃油(控制油温18±8℃),碳罐称重记录m2,加载至2g击穿,碳罐称重记录m3; 2、按照计算的脱附量BV数a1*33%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重记录m4; 3、继续在环境温度为23℃±5℃环境下存放12~36小时,碳罐称重并记录m5; 4、环境温度为23℃±5℃,按照计算的脱附量BV数a1*67%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,更换为辅助碳罐,替换下来的碳罐封住所有口; 5、环境温度:为23℃±5℃,采用油泵通电放干油(直到抽不出油,记录抽出汽油量),加入标称油箱容积:10%±0.5L(油温24℃±2℃); 6、控制环境温度:23℃±3℃ ,静置6~36小时,拆除辅助碳罐,对原碳罐再次称重记录为m7,并接回原碳罐(堵住脱附口); 7、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃记录密闭室碳氢排放量M1,以37±1 L/min的速度往油箱内加入85%±0.5L油箱额定容积的国六汽油,记录加油量 X L; 8、在上一步结束后的60s±5s时间内,记录密闭室碳氢排放量M2,碳罐称重记录m8,记录系统加油过程的HC排放 x g; 计算加油排放=x/X 接受标准: 要求加油过程中HC排放≤0.04g/L | 试验规范: 参照国六法规标准测试或按客户要求 测试试验用的燃油RVP值(要求在60~62之间); 1、碳罐称重并记录m1,控制环境温度为23±5℃,连接好加油管、油箱、吸附管、FTIV阀(加油时通电)、碳罐,堵住油泵口,加入40%国六燃油(控制油温18±8℃),碳罐称重记录m2,加载至2g击穿,碳罐称重记录m3; 2、按照计算的脱附量BV数a1*33%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重记录m4; 3、继续在环境温度为23℃±5℃环境下存放12~36小时,碳罐称重并记录m5; 4、环境温度为23℃±5℃,按照计算的脱附量BV数a1*67%(a1 BV)进行脱附,脱附速度用18L/min,碳罐称重并记录m6,更换为辅助碳罐,替换下来的碳罐封住所有口; 5、环境温度:为23℃±5℃,采用油泵通电放干油(直到抽不出油,记录抽出汽油量),加入标称油箱容积:10%±0.5L(油温24℃±2℃); 6、控制环境温度:23℃±3℃ ,静置6~36小时,拆除辅助碳罐,对原碳罐再次称重记录为m7,并接回原碳罐(堵住脱附口); 7、控制室内温度为23℃±3℃,准备好加油小车,控制燃油温度为20℃±1℃记录密闭室碳氢排放量M1,以37±1 L/min的速度往油箱内加入85%±0.5L油箱额定容积的国六汽油,记录加油量 X L; 8、在上一步结束后的60s±5s时间内,记录密闭室碳氢排放量M2,碳罐称重记录m8,记录系统加油过程的HC排放 x g; 计算加油排放=x/X 接受标准: 要求加油过程中HC排放≤0.04g/L | DV | 1 assy | 开始2023.3.15 结束2023.3.20 | type actual start and finish date | Assembly/总成 | 待定 | |||||||
19.压力交变试验 | 19.压力交变试验 | 19.压力交变试验 | 试验规范: 1、持续监测和记录压力/真空、位移和温度,其速率足以记录突然变化以及最大值和最小值。如果发现储罐发生泄漏,则终止试验。 2、试验结束时,排空液体,拆除发送装置,检查连接至储罐内部的所有储液罐、阀门、支架、挡板,并验证所有此类附件仍然牢固。 3、每次试验结束后,检查并记录储罐上发现的所有泄漏、裂纹、内部附件断裂或不一致区域的位置。 接受标准: 测试完成后,油箱无损坏(泄漏、裂纹),70kPa压力下保压60s,油箱无泄漏。 油箱内置件无损坏、干涉且应仍装配牢固。油箱本体最大残留变形量≤10mm,测量深度变化不得导致油箱储存容积损失大于4L。 | 试验规范: 1、持续监测和记录压力/真空、位移和温度,其速率足以记录突然变化以及最大值和最小值。如果发现储罐发生泄漏,则终止试验。 2、试验结束时,排空液体,拆除发送装置,检查连接至储罐内部的所有储液罐、阀门、支架、挡板,并验证所有此类附件仍然牢固。 3、每次试验结束后,检查并记录储罐上发现的所有泄漏、裂纹、内部附件断裂或不一致区域的位置。 接受标准: 测试完成后,油箱无损坏(泄漏、裂纹),70kPa压力下保压60s,油箱无泄漏。 油箱内置件无损坏、干涉且应仍装配牢固。油箱本体最大残留变形量≤10mm,测量深度变化不得导致油箱储存容积损失大于4L。 | 试验规范: 1、持续监测和记录压力/真空、位移和温度,其速率足以记录突然变化以及最大值和最小值。如果发现储罐发生泄漏,则终止试验。 2、试验结束时,排空液体,拆除发送装置,检查连接至储罐内部的所有储液罐、阀门、支架、挡板,并验证所有此类附件仍然牢固。 3、每次试验结束后,检查并记录储罐上发现的所有泄漏、裂纹、内部附件断裂或不一致区域的位置。 接受标准: 测试完成后,油箱无损坏(泄漏、裂纹),70kPa压力下保压60s,油箱无泄漏。 油箱内置件无损坏、干涉且应仍装配牢固。油箱本体最大残留变形量≤10mm,测量深度变化不得导致油箱储存容积损失大于4L。 | DV | 3 assy | 开始2023.3.20 结束2023.4.10 | type actual start and finish date | Assembly/总成 | 待定 |
Date | Page | 1 | of | ||||||||||||||||
System | Assembly | Program | Design Engineer | ||||||||||||||||
Transmission - | TOC Line Assembly-Aux Cooler Line Clamp Joint | ||||||||||||||||||
Subsystem | Component | Latest Design Level | Concurred | ||||||||||||||||
Trans Oil Cooling | TOC Line Assembly - | Production | |||||||||||||||||
Design | Sample Size | Statistical Test | Statistical Test | Timing | Timing | ||||||||||||||
Test Name/Source | Acceptance Criteria | Test Results | Test Results | Test Results | Level | Accept. Criteria* | Accept. Criteria* | ||||||||||||
Tested | Required | Tested | Required | Actual | Sched. | Actual | |||||||||||||
Hose/Tube/Clamp Joint at Combo Cooler: | Hose/Tube/Clamp Joint at Combo Cooler: | Hose/Tube/Clamp Joint at Combo Cooler: | |||||||||||||||||
Joint Burst Pressure Test ASTM D380 | Joint Burst Pressure Test ASTM D380 | Joint Burst Pressure Test ASTM D380 | Samples must separate at a pressure greater than 3 times the maximum system pressure. Samples must separate at a pressure equal to or greater than the current design. Samples must separate at a min pressure of 450 PSI. The hose/endform interference mus | Samples must separate at a pressure greater than 3 times the maximum system pressure. Samples must separate at a pressure equal to or greater than the current design. Samples must separate at a min pressure of 450 PSI. The hose/endform interference mus | Samples must separate at a pressure greater than 3 times the maximum system pressure. Samples must separate at a pressure equal to or greater than the current design. Samples must separate at a min pressure of 450 PSI. The hose/endform interference mus | DV PV | 6 6 | ||||||||||||
Insertion Force CETP: 07.01-L-3XX | Insertion Force CETP: 07.01-L-3XX | Insertion Force CETP: 07.01-L-3XX | The force required to installed the hose onto the endform at max interference shall be 17 lbs Max. Use largest OD tube and smallest ID hose. | The force required to installed the hose onto the endform at max interference shall be 17 lbs Max. Use largest OD tube and smallest ID hose. | The force required to installed the hose onto the endform at max interference shall be 17 lbs Max. Use largest OD tube and smallest ID hose. | DV PV | 6 6 | ||||||||||||
Joint Burst Pressure Test After Pressure Temperature Cycling. | Joint Burst Pressure Test After Pressure Temperature Cycling. | Joint Burst Pressure Test After Pressure Temperature Cycling. | Samples must separate at a pressure greater than 450 PSI or 3 times the maximum system pressure after completing pressure temperature cycling testing. | Samples must separate at a pressure greater than 450 PSI or 3 times the maximum system pressure after completing pressure temperature cycling testing. | Samples must separate at a pressure greater than 450 PSI or 3 times the maximum system pressure after completing pressure temperature cycling testing. | Ref | 6 | Reference Test | Reference Test | Reference Test | Reference Test | ||||||||
Leak Test CETP No. 07.01-L-342 | Leak Test CETP No. 07.01-L-342 | Leak Test CETP No. 07.01-L-342 | The joint must not leak when 150 PSI is applied to the joint for 3 minutes. The clamp/hose must not move during this time. The joint cannot blow off. Initial test samples from the Pressure Temperature Cycling Test, Joint Pressure Burst Test and the Cor | The joint must not leak when 150 PSI is applied to the joint for 3 minutes. The clamp/hose must not move during this time. The joint cannot blow off. Initial test samples from the Pressure Temperature Cycling Test, Joint Pressure Burst Test and the Cor | The joint must not leak when 150 PSI is applied to the joint for 3 minutes. The clamp/hose must not move during this time. The joint cannot blow off. Initial test samples from the Pressure Temperature Cycling Test, Joint Pressure Burst Test and the Cor | DV PV | 6 6 | ||||||||||||
Torque Angle Testing Fasteners | Torque Angle Testing Fasteners | Torque Angle Testing Fasteners | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | DV | 10 | ||||||||||||
Vibration Testing Joint Test | Vibration Testing Joint Test | Vibration Testing Joint Test | Hose Section of TOC lines must withstand 100 hous of vibration testing at maximum engine motion. Any routing offset should be included in the initial set-up of the test sample. The ambient temperature is 150 C and the system is pressurized to 50 PSI air | Hose Section of TOC lines must withstand 100 hous of vibration testing at maximum engine motion. Any routing offset should be included in the initial set-up of the test sample. The ambient temperature is 150 C and the system is pressurized to 50 PSI air | Hose Section of TOC lines must withstand 100 hous of vibration testing at maximum engine motion. Any routing offset should be included in the initial set-up of the test sample. The ambient temperature is 150 C and the system is pressurized to 50 PSI air | DV | 6 | ||||||||||||
Vibration Testing TOC Line Assembly | Vibration Testing TOC Line Assembly | Vibration Testing TOC Line Assembly | DV | 6 | |||||||||||||||
Corrosion Component Testing- 336 hrs. salt spray per ASTM B117 entire assembly | Corrosion Component Testing- 336 hrs. salt spray per ASTM B117 entire assembly | Corrosion Component Testing- 336 hrs. salt spray per ASTM B117 entire assembly | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | DV | 6 | ||||||||||||
Corrosion Component Testing- Coated Fastener Corrosion Test - Ford Labortory Test Method BI-123-02 | Corrosion Component Testing- Coated Fastener Corrosion Test - Ford Labortory Test Method BI-123-02 | Corrosion Component Testing- Coated Fastener Corrosion Test - Ford Labortory Test Method BI-123-02 | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | The test sample shall include the component and all interface component at the latest design level. The system shall show no signs of leakage when subjected to Leak Test evaluation. | DV | 6 | ||||||||||||
Quick Connect Secondary Latch Burst Strength CETP No. 07.01-L-344 | Quick Connect Secondary Latch Burst Strength CETP No. 07.01-L-344 | Quick Connect Secondary Latch Burst Strength CETP No. 07.01-L-344 | The test samples must withstand a pressure of 150 PSI without leaking or separating. | The test samples must withstand a pressure of 150 PSI without leaking or separating. | The test samples must withstand a pressure of 150 PSI without leaking or separating. | DV PV | 6 6 | ||||||||||||
Tube Flare-Tube Nut Joint Testing for Transmission Cooling CETP-70.01-L-345 | Tube Flare-Tube Nut Joint Testing for Transmission Cooling CETP-70.01-L-345 | Tube Flare-Tube Nut Joint Testing for Transmission Cooling CETP-70.01-L-345 | The test samples must complete the leak tests at 150 psi (or maximum system pressure if greater than 150 psi) defined in the CETP without leaking | The test samples must complete the leak tests at 150 psi (or maximum system pressure if greater than 150 psi) defined in the CETP without leaking | The test samples must complete the leak tests at 150 psi (or maximum system pressure if greater than 150 psi) defined in the CETP without leaking | DV PV | 6 6 | ||||||||||||
Hose Material | |||||||||||||||||||
Original Burst Test | Samples must burst at a pressure greater than 3 times the maximum system pressure. Samples must burst at a pressure equal to or greater than the current design. Samples must burst at a min pressure of 450 PSI. | Samples must burst at a pressure greater than 3 times the maximum system pressure. Samples must burst at a pressure equal to or greater than the current design. Samples must burst at a min pressure of 450 PSI. | Samples must burst at a pressure greater than 3 times the maximum system pressure. Samples must burst at a pressure equal to or greater than the current design. Samples must burst at a min pressure of 450 PSI. | DV PV | 6 6 | ||||||||||||||
Hot Oil Circulation Test Circulated specified fluid at 135C, 150C or 175C for 1000 hr @ 50 PSI. | Hot Oil Circulation Test Circulated specified fluid at 135C, 150C or 175C for 1000 hr @ 50 PSI. | Hot Oil Circulation Test Circulated specified fluid at 135C, 150C or 175C for 1000 hr @ 50 PSI. | Samples must not leak or burst during testing. Samples must burst at a min pressure of 450 PSI. Use smallest OD tube and largest ID hose. | Samples must not leak or burst during testing. Samples must burst at a min pressure of 450 PSI. Use smallest OD tube and largest ID hose. | Samples must not leak or burst during testing. Samples must burst at a min pressure of 450 PSI. Use smallest OD tube and largest ID hose. | DV PV | 6 6 | ||||||||||||
Accelerated Impulse Test Pressure impulse from 20 psi to 150 psi @ 30 to 40 cycles per minutes @ 135C, 150C or 175C for 150,000 and 250,000 cycles. | Accelerated Impulse Test Pressure impulse from 20 psi to 150 psi @ 30 to 40 cycles per minutes @ 135C, 150C or 175C for 150,000 and 250,000 cycles. | Accelerated Impulse Test Pressure impulse from 20 psi to 150 psi @ 30 to 40 cycles per minutes @ 135C, 150C or 175C for 150,000 and 250,000 cycles. | Samples must have a burst pressure after 150,000 cycles a max of 15% less than original bust pressure. Samples must have a burst pressure after 250,000 cycles a maximum of 20% less than original burst pressure. Use smallest OD tube and largest ID hose. | Samples must have a burst pressure after 150,000 cycles a max of 15% less than original bust pressure. Samples must have a burst pressure after 250,000 cycles a maximum of 20% less than original burst pressure. Use smallest OD tube and largest ID hose. | Samples must have a burst pressure after 150,000 cycles a max of 15% less than original bust pressure. Samples must have a burst pressure after 250,000 cycles a maximum of 20% less than original burst pressure. Use smallest OD tube and largest ID hose. | DV PV | 6 6 | ||||||||||||
Cover | |||||||||||||||||||
Heat Aged Per ASTM D573 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D573 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D573 @ 150C & 175C for 168hr. | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | DV PV | 6 6 | ||||||||||||
Properties 168hr @ 150C Tensile -10 max. Elongation -40 max Modulus Volume | Properties 168hr @ 150C Tensile -10 max. Elongation -40 max Modulus Volume | Properties 168hr @ 150C Tensile -10 max. Elongation -40 max Modulus Volume | DV PV | 6 6 | |||||||||||||||
Properties 168hrs @ 175C Tensile -30% max Elongation -70% max Modulus Volume | Properties 168hrs @ 175C Tensile -30% max Elongation -70% max Modulus Volume | Properties 168hrs @ 175C Tensile -30% max Elongation -70% max Modulus Volume | DV PV | 6 6 | |||||||||||||||
Tube | |||||||||||||||||||
Heat Aged Per ASTM D865 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D865 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D865 @ 150C & 175C for 168hr. | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | DV PV | 6 6 | ||||||||||||
Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | DV PV | 6 6 | |||||||||||||||
Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | DV PV | 6 6 | |||||||||||||||
Heat Aged Per ASTM D471 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D471 @ 150C & 175C for 168hr. | Heat Aged Per ASTM D471 @ 150C & 175C for 168hr. | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | Original Properties Tensile Elongation Modulus Volume Sp | DV PV | 6 6 | ||||||||||||
Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | Properties 168hr @ 150C Tensile -50% max Elongation -65% max Modulus Volume 0 - +35 | DV PV | 6 6 | |||||||||||||||
Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | Properties 168hrs @ 175C Tensile -30% max Elongation -60% max Modulus Volume +25% max | DV PV | 6 6 | |||||||||||||||
Vehicle Assembly Plant Audit | Conduct Audit of Vehicle Assembly Plant at 1PP. | Conduct Audit of Vehicle Assembly Plant at 1PP. | Conduct Audit of Vehicle Assembly Plant at 1PP. | ||||||||||||||||
Vehicle Assembly Plant Trial | Conduct trials of all new designs that impact VO assembly process. | Conduct trials of all new designs that impact VO assembly process. | Conduct trials of all new designs that impact VO assembly process. | ||||||||||||||||
Package Clearance | Package Clearance | Package Clearance | Verify the dimensions of the TOC line assembly using a prototype gauge (block and stanchions) and compare it to the Digital Buck nominal position. Assess how much the position of the installed assembly can vary (full range) relative to the Digital Buck no | Verify the dimensions of the TOC line assembly using a prototype gauge (block and stanchions) and compare it to the Digital Buck nominal position. Assess how much the position of the installed assembly can vary (full range) relative to the Digital Buck no | Verify the dimensions of the TOC line assembly using a prototype gauge (block and stanchions) and compare it to the Digital Buck nominal position. Assess how much the position of the installed assembly can vary (full range) relative to the Digital Buck no | ||||||||||||||
Vehicle Testing | Vehicle Testing | Vehicle Testing | TOC Lines must complete durability , Davis Dam and other vehicle testing without leakage, NVH or abrasion issues. | TOC Lines must complete durability , Davis Dam and other vehicle testing without leakage, NVH or abrasion issues. | TOC Lines must complete durability , Davis Dam and other vehicle testing without leakage, NVH or abrasion issues. | ||||||||||||||
TOC Line Bracket Analysis | Yield Strength to FEA Stress Ratio at minimum thickness must be equal to or greater than 1.6 when the TOC line center of gravity is subjected to a loading of 10g (or the worst case loading for the vehicle application) independently evaluated in each of th | Yield Strength to FEA Stress Ratio at minimum thickness must be equal to or greater than 1.6 when the TOC line center of gravity is subjected to a loading of 10g (or the worst case loading for the vehicle application) independently evaluated in each of th | Yield Strength to FEA Stress Ratio at minimum thickness must be equal to or greater than 1.6 when the TOC line center of gravity is subjected to a loading of 10g (or the worst case loading for the vehicle application) independently evaluated in each of th | DV | 1 (FEA) | Analytical DVP&R (Finite Element Analysis). | Analytical DVP&R (Finite Element Analysis). | Analytical DVP&R (Finite Element Analysis). | Analytical DVP&R (Finite Element Analysis). | ||||||||||
*Use of this column is optional | |||||||||||||||||||
7184 | FAP03-149 |
Date | Page | 1 | of | |||||||||||||||||
System | Assembly | Program | Design Engineer | |||||||||||||||||
Transmission - | TOC Line Assembly (BB5P-7H420-AA) | 2011MY U502 | John Stimac | |||||||||||||||||
Subsystem | Component | Latest Design Level | Concurred | |||||||||||||||||
Trans Oil Cooling | PIA Tube-O to CBV joint | Production | ||||||||||||||||||
Design | Sample Size | Statistical Test | Statistical Test | Timing (Day/Month/Year) | Timing (Day/Month/Year) | |||||||||||||||
Test Name/Source | Acceptance Criteria | Where Tests Run | Test Results | Test Results | Test Results | Level | Accept. Criteria* | Accept. Criteria* | ||||||||||||
Tested | Required | Tested | Required | Actual | Sched. | Actual | ||||||||||||||
Tube-o to cooling bypass valve joint (PIA to BB5P-7H420-AA): Tier 1 = Cooper | Tube-o to cooling bypass valve joint (PIA to BB5P-7H420-AA): Tier 1 = Cooper | Tube-o to cooling bypass valve joint (PIA to BB5P-7H420-AA): Tier 1 = Cooper | ||||||||||||||||||
Joint is c/o from D258/385/471 (Tube, tube nut, o-ring and valve housing ports are identical). Confirm same tooling being used to make bead on tube. | Joint is c/o from D258/385/471 (Tube, tube nut, o-ring and valve housing ports are identical). Confirm same tooling being used to make bead on tube. | Joint is c/o from D258/385/471 (Tube, tube nut, o-ring and valve housing ports are identical). Confirm same tooling being used to make bead on tube. | ||||||||||||||||||
Visual Inspection (applicable to the joint components) | Visual Inspection (applicable to the joint components) | Visual Inspection (applicable to the joint components) | See ES-8L2P-7H420-AA | See ES-8L2P-7H420-AA | See ES-8L2P-7H420-AA | Cooper Standard | DV PV | 100% 100% | ||||||||||||
Leakage Test with Transmission Fluid (This joint is covered under the Leak Test in the "Tube Assy" worksheet) | Leakage Test with Transmission Fluid (This joint is covered under the Leak Test in the "Tube Assy" worksheet) | Leakage Test with Transmission Fluid (This joint is covered under the Leak Test in the "Tube Assy" worksheet) | See ES-8L2P-7H420-AA | See ES-8L2P-7H420-AA | See ES-8L2P-7H420-AA | Cooper Standard | DV PV | 6 assy 6 assy | This joint is covered under the Leak Test in the "Tube Assy" worksheet NHTSA Campaign #: 96V015000 | This joint is covered under the Leak Test in the "Tube Assy" worksheet NHTSA Campaign #: 96V015000 | This joint is covered under the Leak Test in the "Tube Assy" worksheet NHTSA Campaign #: 96V015000 | This joint is covered under the Leak Test in the "Tube Assy" worksheet NHTSA Campaign #: 96V015000 | ||||||||
Torque angle testing for tube nut to CBV housing (2 joints) | Torque angle testing for tube nut to CBV housing (2 joints) | Torque angle testing for tube nut to CBV housing (2 joints) | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | All new joints must undergo torque angle test to determine the torque installation. Identical carryover joints used on new applications can use surrogate data. The DVP must reference the torque angle report number and a copy of the report must be availa | Cooper Standard | 3/13/2008: Cooper to provide torque angle data NHTSA Campaign #: 91V175000 07V453000 | 3/13/2008: Cooper to provide torque angle data NHTSA Campaign #: 91V175000 07V453000 | 3/13/2008: Cooper to provide torque angle data NHTSA Campaign #: 91V175000 07V453000 | 3/13/2008: Cooper to provide torque angle data NHTSA Campaign #: 91V175000 07V453000 |
试验/Test | 试验名称/Test Name | 试验项的目的 | 以下设变需要重做实验 |
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 |
日期 | 试验内容 | 描述 | 修改原因 | 当前项目节点 | 修改者 |
联系我们
上海总部:上海市浦东新区纳贤路800号科海大楼2层
无锡分公司:无锡市中国传感网国际创新园F11栋2楼
邮 箱:bd@datauseful.com
给力助理小程序
给力讯息APP
给力商讯公众号
返回顶部